(1) steady-state probabilities $\rightarrow P_{i}$

Q: If I look at the system at some random tine, what is the probability that the system will be in state $k=i$?

A: p_{i}
To find P_{i}^{\prime} 's, we have two techniques:
a) Let the system evolve. Find the limits.
b) Use balance equations \rightarrow solve equations.

The version of balance equation that we used in class relies on "global" balance.
Each global balance equation comes from selecting a collection S of state and then balance the probability flux in and out of this collection.

$$
\text { probability "flux" }=\text { "flux" that }
$$ that goesinto S goes out of S

For the Erlang-B system,

$$
p_{2} \lambda \delta=p_{3} 3 \mu \delta
$$

$$
\begin{aligned}
& \Rightarrow p_{k-1} \lambda \delta=p_{k} k \mu \delta \\
& P_{k}=\frac{\lambda}{n k} P_{k-1}=\frac{A}{k} P_{k-1} \\
& P_{1}=\frac{A}{1} P_{0} \\
& P_{2}=\frac{A}{2} P_{1}=\frac{A}{2} \frac{A}{1} P_{0} \\
& P_{3}=\frac{A}{3} P_{2}=\frac{A}{3} \frac{A}{2} \frac{A}{1} P_{0}
\end{aligned}
$$

$$
P_{k}=\frac{A^{k}}{k!} P_{0}
$$

use the fact that the sum of P_{k} should be 1 .

$$
1=\sum_{k=0}^{m} p_{k}=p_{0} \sum_{k=0}^{m} \frac{A^{k}}{k!} \Rightarrow p_{0}=\frac{1}{\sum_{k=0}^{m} \frac{A^{k}}{k!} \Rightarrow p_{k}=\frac{A^{k} / k!}{\sum_{i=0}^{m} \frac{A^{i}}{i!}} \text { in }}
$$

